生成验证码数据集
仅使用了数字0-9
#coding:utf-8from captcha.image import ImageCaptcha # pip install captchaimport numpy as npfrom PIL import Imageimport random,sys# 验证码中的字符, 就不用汉字了number = ['0','1','2','3','4','5','6','7','8','9']#alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']#ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']# 验证码一般都无视大小写;验证码长度4个字符def random_captcha_text(char_set=number, captcha_size=4): captcha_text = [] for i in range(captcha_size): c = random.choice(char_set) captcha_text.append(c) return captcha_text# 生成字符对应的验证码def gen_captcha_text_and_image(): image = ImageCaptcha() captcha_text = random_captcha_text() captcha_text = ''.join(captcha_text) #把验证码列表转为字符串 captcha = image.generate(captcha_text) image.write(captcha_text, 'captcha/images/' + captcha_text + '.jpg') # 写到文件num = 5000if __name__ == '__main__': for i in range(num): gen_captcha_text_and_image() sys.stdout.write('\r>> Creating image %d/%d' % (i+1, num)) sys.stdout.flush() sys.stdout.write('\n') sys.stdout.flush() print('生成完毕')复制代码
将数据集转化为tfrecord的文件
import tensorflow as tfimport osimport randomimport mathimport sysfrom PIL import Imageimport numpy as np#验证集数量_NUM_TEST = 500#随机种子_RANDOM_SEED = 0#数据集路径DATASET_DIR = "E:/tf3/captcha/images/"#tfrecord文件存放路径TFRECORD_DIR = "E:/tf3/captcha/"#判断tfrecord文件是不是存在def _dataset_exists(dataset_dir): for split_name in ['train', 'test']: output_filename = os.path.join(dataset_dir, split_name + '.tfrecords') if not tf.gfile.Exists(output_filename): return False return True#获取所有的验证码图片def _get_filenames_and_classes(dataset_dir): photo_filenames = [] for filename in os.listdir(dataset_dir): path = os.path.join(dataset_dir, filename) photo_filenames.append(path) return photo_filenamesdef int64_feature(values): if not isinstance(values, (tuple, list)): values = [values] return tf.train.Feature(int64_list=tf.train.Int64List(value=values))def bytes_feature(values): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))def image_to_tfexample(image_data, label0, label1, label2, label3): return tf.train.Example(features=tf.train.Features(feature={ 'image':bytes_feature(image_data), 'label0':int64_feature(label0), 'label1':int64_feature(label1), 'label2':int64_feature(label2), 'label3':int64_feature(label3), }))#把数据转为tfrecord格式def _convert_dataset(split_name, filenames, dataset_dir): assert split_name in ['train', 'test'] with tf.Session() as sess: #定义tfrecord文件的路径和名字 output_filename = os.path.join(TFRECORD_DIR, split_name + '.tfrecords') with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer: for i, filename in enumerate(filenames): try: #sys.stdout.write('\r>> Converting image %d/%d' % (i+1, len(filenames))) #sys.stdout.flush() #读取照片 image_data = Image.open(filename) #根据模型的结构resize image_data = image_data.resize((224, 224)) #灰度化 image_data = np.array(image_data.convert('L')) image_data = image_data.tobytes() #获取labels labels = filename.split('/')[-1][0:4] num_labels = [] for j in range(4): num_labels.append(int(labels[j])) #生成protocol数据类型 example = image_to_tfexample(image_data,num_labels[0], num_labels[1], num_labels[2], num_labels[3]) tfrecord_writer.write(example.SerializeToString()) except IOError as e: print('could not read: ', filename) print('error: ', e) print('skip it \n') #sys.stdout.write('\n') #sys.stdout.flush()if _dataset_exists(TFRECORD_DIR): print("wenjiancunzai")else: #获取所有的图片 photo_filenames = _get_filenames_and_classes(DATASET_DIR) #把数据切分为训练集和测试机斌打乱 random.seed(_RANDOM_SEED) random.shuffle(photo_filenames) training_filenames = photo_filenames[_NUM_TEST:] testing_filenames = photo_filenames[:_NUM_TEST] #数据转化 _convert_dataset('train', training_filenames, DATASET_DIR) _convert_dataset('test', testing_filenames, DATASET_DIR) print('生成tfrecord文件') 复制代码
使用Alexnet网络进行从头训练
在使用之前需要配置一下环境,因为在下面训练的代码中,要在nets中import nets_factory, 所以:
并且在用的的alexnet网络中修改定存输出import osimport tensorflow as tfimport numpy as npfrom PIL import Imagefrom nets import nets_factory#不同字符数量CHAR_SET_LEN = 10#图片高度、宽度IMAGE_HEIGHT = 60IMAGE_WIDTH = 160#批次BATCH_SIZE = 1#tfrecord文件存放路径TFRECORD_FILE = "E:/tf3/captcha/test.tfrecords"#占位符x = tf.placeholder(tf.float32, [None, 224, 224])y0 = tf.placeholder(tf.float32, [None])y1 = tf.placeholder(tf.float32, [None])y2 = tf.placeholder(tf.float32, [None])y3 = tf.placeholder(tf.float32, [None])#学习率lr = tf.Variable(0.03, dtype=tf.float32)#从tfrecord读取数据def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader() #返回文件名和文件 _,serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example, features={ 'image': tf.FixedLenFeature([], tf.string), 'label0': tf.FixedLenFeature([], tf.int64), 'label1': tf.FixedLenFeature([], tf.int64), 'label2': tf.FixedLenFeature([], tf.int64), 'label3': tf.FixedLenFeature([], tf.int64), }) #获取图片数据 image = tf.decode_raw(features['image'], tf.uint8) #tf.train.shuffle_batch必须确定shape image = tf.reshape(image, [224, 224]) #图片预处理 image = tf.cast(image, tf.float32) / 255.0 image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) #获取label label0 = tf.cast(features['label0'], tf.int32) label1 = tf.cast(features['label0'], tf.int32) label2 = tf.cast(features['label0'], tf.int32) label3 = tf.cast(features['label0'], tf.int32) return image, label0, label1, label2, label3#获取图片数据和标签image, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)#使用shuffle_batch可以随机打乱image_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch( [image, label0, label1, label2, label3], batch_size = BATCH_SIZE, capacity = 50000, min_after_dequeue=10000, num_threads=1)#定义网络结构train_network_fn = nets_factory.get_network_fn( 'alexnet_v2', num_classes=CHAR_SET_LEN, weight_decay=0.0005, is_training=True)with tf.Session() as sess: #inputs: a tensor of size [batch_size, height, width, channels] X = tf.reshape(x, [BATCH_SIZE, 224,224,1]) #数据输入网络得到输出值 logits0, logits1, logits2, logits3, end_points = train_network_fn(X) #把标签转成one_hot的形式 one_hot_labels0 = tf.one_hot(indices=tf.cast(y0, tf.int32), depth=CHAR_SET_LEN) one_hot_labels1 = tf.one_hot(indices=tf.cast(y1, tf.int32), depth=CHAR_SET_LEN) one_hot_labels2 = tf.one_hot(indices=tf.cast(y2, tf.int32), depth=CHAR_SET_LEN) one_hot_labels3 = tf.one_hot(indices=tf.cast(y3, tf.int32), depth=CHAR_SET_LEN) #计算loss loss0 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits0, labels=one_hot_labels0)) loss1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits1, labels=one_hot_labels1)) loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits2, labels=one_hot_labels2)) loss3 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits3, labels=one_hot_labels3)) #计算总的loss total_loss = (loss0+loss1+loss2+loss3)/4.0 #优化total_loss optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(total_loss) #计算准确率 correct_prediction0 = tf.equal(tf.argmax(one_hot_labels0, 1), tf.argmax(logits0, 1)) accuracy0 = tf.reduce_mean(tf.cast(correct_prediction0, tf.float32)) correct_prediction1 = tf.equal(tf.argmax(one_hot_labels1, 1), tf.argmax(logits1, 1)) accuracy1 = tf.reduce_mean(tf.cast(correct_prediction1, tf.float32)) correct_prediction2 = tf.equal(tf.argmax(one_hot_labels2, 1), tf.argmax(logits2, 1)) accuracy2 = tf.reduce_mean(tf.cast(correct_prediction2, tf.float32)) correct_prediction3 = tf.equal(tf.argmax(one_hot_labels3, 1), tf.argmax(logits3, 1)) accuracy3 = tf.reduce_mean(tf.cast(correct_prediction3, tf.float32)) #用于保存模型 saver = tf.train.Saver() #初始化 sess.run(tf.global_variables_initializer()) #创建一个协调器,管理线程 coord = tf.train.Coordinator() #启动queuerunner, 此时文件名队列已经进入队 threads = tf.train.start_queue_runners(sess=sess, coord=coord) for i in range(6001): #获取一个批次的数据和标签 b_image, b_label0, b_label1, b_label2, b_label3 = sess.run([image_batch, label_batch0, label_batch1, label_batch2, label_batch3]) #优化模型 sess.run(optimizer, feed_dict={x: b_image, y0: b_label0, y1: b_label1, y2: b_label2, y3: b_label3}) # 每迭代20词计算一次loss和准确率 if i % 20 == 0: #每迭代2000次降低一次学习率 if i%2000 == 0: sess.run(tf.assign(lr, lr/3)) acc0,acc1,acc2,acc3,loss_ = sess.run([accuracy0,accuracy1,accuracy2,accuracy3,total_loss],feed_dict={x:b_image, y0:b_label0, y1:b_label1, y2:b_label2, y3:b_label3}) learning_rate = sess.run(lr) print("Iter:%d Loss:%.3f Accuracy:%.2f,%.2f,%.2f,%.2f Learning_rate:%.4f" % (i,loss_,acc0,acc1,acc2,acc3,learning_rate)) #保存模型 #if acc0 > 0.9 and acc1>0.9and if i == 6000: saver.save(sess, "./captcha/models/crack_captcha.model", gloabl_step=i) break #通知其他线程关闭 coord.request_stop() #其他所有线程关闭之后,这一函数才能返回 coord.join(threads)复制代码
最后会得到一个models参数。
使用得到的参数进行预测检验
import osimport tensorflow as tfimport numpy as npfrom PIL import Imagefrom nets import nets_factoryimport matplotlib.pyplot as plt#不同字符数量CHAR_SET_LEN = 10#图片高度、宽度IMAGE_HEIGHT = 60IMAGE_WIDTH = 160#批次BATCH_SIZE = 1#tfrecord文件存放路径TFRECORD_FILE = "E:/tf3/captcha/test.tfrecords"#占位符x = tf.placeholder(tf.float32, [None, 224, 224])#从tfrecord读取数据def read_and_decode(filename): #根据文件名生成一个队列 filename_queue = tf.train.string_input_producer([filename]) reader = tf.TFRecordReader() #返回文件名和文件 _,serialized_example = reader.read(filename_queue) features = tf.parse_single_example(serialized_example, features={ 'image': tf.FixedLenFeature([], tf.string), 'label0': tf.FixedLenFeature([], tf.int64), 'label1': tf.FixedLenFeature([], tf.int64), 'label2': tf.FixedLenFeature([], tf.int64), 'label3': tf.FixedLenFeature([], tf.int64), }) #获取图片数据 image = tf.decode_raw(features['image'], tf.uint8) #没有经过预处理的灰度图 image_raw = tf.reshape(image, [224, 224]) #tf.train.shuffle_batch必须确定shape image = tf.reshape(image, [224, 224]) #图片预处理 image = tf.cast(image, tf.float32) / 255.0 image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) #获取label label0 = tf.cast(features['label0'], tf.int32) label1 = tf.cast(features['label0'], tf.int32) label2 = tf.cast(features['label0'], tf.int32) label3 = tf.cast(features['label0'], tf.int32) return image, image_raw, label0, label1, label2, label3#获取图片数据和标签image, image_raw, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)#使用shuffle_batch可以随机打乱image_batch, image_raw_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch( [image, image_raw, label0, label1, label2, label3], batch_size = BATCH_SIZE, capacity = 50000, min_after_dequeue=10000, num_threads=1)#定义网络结构train_network_fn = nets_factory.get_network_fn( 'alexnet_v2', num_classes=CHAR_SET_LEN, weight_decay=0.0005, is_training=False)with tf.Session() as sess: #inputs: a tensor of size [batch_size, height, width, channels] X = tf.reshape(x, [BATCH_SIZE, 224,224,1]) #数据输入网络得到输出值 logits0, logits1, logits2, logits3, end_points = train_network_fn(X) #预测值 prediction0 = tf.reshape(logits0, [-1, CHAR_SET_LEN]) prediction0 = tf.argmax(prediction0, 1) prediction1 = tf.reshape(logits1, [-1, CHAR_SET_LEN]) prediction1 = tf.argmax(prediction1, 1) prediction2 = tf.reshape(logits2, [-1, CHAR_SET_LEN]) prediction2 = tf.argmax(prediction2, 1) prediction3 = tf.reshape(logits3, [-1, CHAR_SET_LEN]) prediction3 = tf.argmax(prediction3, 1) #初始化 sess.run(tf.global_variables_initializer()) #载入训练好的模型 saver = tf.train.Saver() saver.restore(sess, './captcha/models/crack_captcha.model-20') #创建一个协调器,管理线程 coord = tf.train.Coordinator() #启动queuerunner, 此时文件名队列已经进入队 threads = tf.train.start_queue_runners(sess=sess, coord=coord) for i in range(5): #获取一个批次的数据和标签 b_image, b_image_raw, b_label0, b_label1, b_label2, b_label3 = sess.run([image_batch, image_raw_batch, label_batch0, label_batch1, label_batch2, label_batch3]) #显示图片 img = Image.fromarray(b_image_raw[0], 'L') plt.imshow(img) plt.axis('off') plt.show() #打印标签 print('label: ', b_label0, b_label1, b_label2, b_label3) #预测 label0, label1, label2, label3 = sess.run([prediction0, prediction1, prediction2, prediction3], feed_dict={x: b_image}) #打印预测值 print("predict: ", label0, label1, label2, label3) #通知其他线程关闭 coord.request_stop() #其他所有线程关闭之后,这一函数才能返回 coord.join(threads)复制代码