博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
验证码的识别练习(从头训练—相比于迁移学习)
阅读量:5929 次
发布时间:2019-06-19

本文共 14930 字,大约阅读时间需要 49 分钟。

生成验证码数据集

仅使用了数字0-9

#coding:utf-8from captcha.image import ImageCaptcha  # pip install captchaimport numpy as npfrom PIL import Imageimport random,sys# 验证码中的字符, 就不用汉字了number = ['0','1','2','3','4','5','6','7','8','9']#alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']#ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']# 验证码一般都无视大小写;验证码长度4个字符def random_captcha_text(char_set=number, captcha_size=4):	captcha_text = []	for i in range(captcha_size):		c = random.choice(char_set)		captcha_text.append(c)	return captcha_text# 生成字符对应的验证码def gen_captcha_text_and_image():	image = ImageCaptcha()	captcha_text = random_captcha_text()	captcha_text = ''.join(captcha_text) #把验证码列表转为字符串	captcha = image.generate(captcha_text)	image.write(captcha_text, 'captcha/images/' + captcha_text + '.jpg')  # 写到文件num = 5000if __name__ == '__main__':    for i in range(num):        gen_captcha_text_and_image()        sys.stdout.write('\r>> Creating image %d/%d' % (i+1, num))        sys.stdout.flush()    sys.stdout.write('\n')    sys.stdout.flush()    print('生成完毕')复制代码

将数据集转化为tfrecord的文件

import tensorflow as tfimport osimport randomimport mathimport sysfrom PIL import Imageimport numpy as np#验证集数量_NUM_TEST = 500#随机种子_RANDOM_SEED = 0#数据集路径DATASET_DIR = "E:/tf3/captcha/images/"#tfrecord文件存放路径TFRECORD_DIR = "E:/tf3/captcha/"#判断tfrecord文件是不是存在def _dataset_exists(dataset_dir):    for split_name in ['train', 'test']:        output_filename = os.path.join(dataset_dir, split_name + '.tfrecords')        if not tf.gfile.Exists(output_filename):            return False    return True#获取所有的验证码图片def _get_filenames_and_classes(dataset_dir):    photo_filenames = []    for filename in os.listdir(dataset_dir):        path = os.path.join(dataset_dir, filename)        photo_filenames.append(path)    return photo_filenamesdef int64_feature(values):    if not isinstance(values, (tuple, list)):        values = [values]    return tf.train.Feature(int64_list=tf.train.Int64List(value=values))def bytes_feature(values):    return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))def image_to_tfexample(image_data, label0, label1, label2, label3):    return tf.train.Example(features=tf.train.Features(feature={        'image':bytes_feature(image_data),        'label0':int64_feature(label0),        'label1':int64_feature(label1),        'label2':int64_feature(label2),        'label3':int64_feature(label3),        }))#把数据转为tfrecord格式def _convert_dataset(split_name, filenames, dataset_dir):    assert split_name in ['train', 'test']    with tf.Session() as sess:        #定义tfrecord文件的路径和名字        output_filename = os.path.join(TFRECORD_DIR, split_name + '.tfrecords')        with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:            for i, filename in enumerate(filenames):                try:                    #sys.stdout.write('\r>> Converting image %d/%d' % (i+1, len(filenames)))                    #sys.stdout.flush()                    #读取照片                    image_data = Image.open(filename)                    #根据模型的结构resize                    image_data = image_data.resize((224, 224))                    #灰度化                    image_data = np.array(image_data.convert('L'))                    image_data = image_data.tobytes()                    #获取labels                    labels = filename.split('/')[-1][0:4]                    num_labels = []                    for j in range(4):                        num_labels.append(int(labels[j]))                    #生成protocol数据类型                    example = image_to_tfexample(image_data,num_labels[0], num_labels[1], num_labels[2], num_labels[3])                    tfrecord_writer.write(example.SerializeToString())                except IOError as e:                    print('could not read: ', filename)                    print('error: ', e)                    print('skip it \n')    #sys.stdout.write('\n')    #sys.stdout.flush()if _dataset_exists(TFRECORD_DIR):    print("wenjiancunzai")else:    #获取所有的图片    photo_filenames = _get_filenames_and_classes(DATASET_DIR)    #把数据切分为训练集和测试机斌打乱    random.seed(_RANDOM_SEED)    random.shuffle(photo_filenames)    training_filenames = photo_filenames[_NUM_TEST:]    testing_filenames = photo_filenames[:_NUM_TEST]    #数据转化    _convert_dataset('train', training_filenames, DATASET_DIR)    _convert_dataset('test', testing_filenames, DATASET_DIR)    print('生成tfrecord文件')    复制代码

使用Alexnet网络进行从头训练

在使用之前需要配置一下环境,因为在下面训练的代码中,要在nets中import nets_factory, 所以:

并且在用的的alexnet网络中修改定存输出

import osimport tensorflow as tfimport numpy as npfrom PIL import Imagefrom nets import nets_factory#不同字符数量CHAR_SET_LEN = 10#图片高度、宽度IMAGE_HEIGHT = 60IMAGE_WIDTH = 160#批次BATCH_SIZE = 1#tfrecord文件存放路径TFRECORD_FILE = "E:/tf3/captcha/test.tfrecords"#占位符x = tf.placeholder(tf.float32, [None, 224, 224])y0 = tf.placeholder(tf.float32, [None])y1 = tf.placeholder(tf.float32, [None])y2 = tf.placeholder(tf.float32, [None])y3 = tf.placeholder(tf.float32, [None])#学习率lr = tf.Variable(0.03, dtype=tf.float32)#从tfrecord读取数据def read_and_decode(filename):    #根据文件名生成一个队列    filename_queue = tf.train.string_input_producer([filename])    reader = tf.TFRecordReader()    #返回文件名和文件    _,serialized_example = reader.read(filename_queue)    features = tf.parse_single_example(serialized_example,                                       features={                                           'image': tf.FixedLenFeature([], tf.string),                                           'label0': tf.FixedLenFeature([], tf.int64),                                           'label1': tf.FixedLenFeature([], tf.int64),                                           'label2': tf.FixedLenFeature([], tf.int64),                                           'label3': tf.FixedLenFeature([], tf.int64),                                           })    #获取图片数据    image = tf.decode_raw(features['image'], tf.uint8)    #tf.train.shuffle_batch必须确定shape    image = tf.reshape(image, [224, 224])    #图片预处理    image = tf.cast(image, tf.float32) / 255.0    image = tf.subtract(image, 0.5)    image = tf.multiply(image, 2.0)    #获取label    label0 = tf.cast(features['label0'], tf.int32)    label1 = tf.cast(features['label0'], tf.int32)    label2 = tf.cast(features['label0'], tf.int32)    label3 = tf.cast(features['label0'], tf.int32)    return image, label0, label1, label2, label3#获取图片数据和标签image, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)#使用shuffle_batch可以随机打乱image_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(    [image, label0, label1, label2, label3], batch_size = BATCH_SIZE,    capacity = 50000, min_after_dequeue=10000, num_threads=1)#定义网络结构train_network_fn = nets_factory.get_network_fn(    'alexnet_v2',    num_classes=CHAR_SET_LEN,    weight_decay=0.0005,    is_training=True)with tf.Session() as sess:    #inputs: a tensor of size [batch_size, height, width, channels]    X = tf.reshape(x, [BATCH_SIZE, 224,224,1])    #数据输入网络得到输出值    logits0, logits1, logits2, logits3, end_points = train_network_fn(X)    #把标签转成one_hot的形式    one_hot_labels0 = tf.one_hot(indices=tf.cast(y0, tf.int32), depth=CHAR_SET_LEN)    one_hot_labels1 = tf.one_hot(indices=tf.cast(y1, tf.int32), depth=CHAR_SET_LEN)    one_hot_labels2 = tf.one_hot(indices=tf.cast(y2, tf.int32), depth=CHAR_SET_LEN)    one_hot_labels3 = tf.one_hot(indices=tf.cast(y3, tf.int32), depth=CHAR_SET_LEN)    #计算loss    loss0 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits0, labels=one_hot_labels0))    loss1 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits1, labels=one_hot_labels1))    loss2 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits2, labels=one_hot_labels2))    loss3 = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=logits3, labels=one_hot_labels3))    #计算总的loss    total_loss = (loss0+loss1+loss2+loss3)/4.0    #优化total_loss    optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(total_loss)    #计算准确率    correct_prediction0 = tf.equal(tf.argmax(one_hot_labels0, 1), tf.argmax(logits0, 1))    accuracy0 = tf.reduce_mean(tf.cast(correct_prediction0, tf.float32))    correct_prediction1 = tf.equal(tf.argmax(one_hot_labels1, 1), tf.argmax(logits1, 1))    accuracy1 = tf.reduce_mean(tf.cast(correct_prediction1, tf.float32))    correct_prediction2 = tf.equal(tf.argmax(one_hot_labels2, 1), tf.argmax(logits2, 1))    accuracy2 = tf.reduce_mean(tf.cast(correct_prediction2, tf.float32))    correct_prediction3 = tf.equal(tf.argmax(one_hot_labels3, 1), tf.argmax(logits3, 1))    accuracy3 = tf.reduce_mean(tf.cast(correct_prediction3, tf.float32))    #用于保存模型    saver = tf.train.Saver()    #初始化    sess.run(tf.global_variables_initializer())    #创建一个协调器,管理线程    coord = tf.train.Coordinator()    #启动queuerunner, 此时文件名队列已经进入队    threads = tf.train.start_queue_runners(sess=sess, coord=coord)    for i in range(6001):        #获取一个批次的数据和标签        b_image, b_label0, b_label1, b_label2, b_label3 = sess.run([image_batch, label_batch0, label_batch1, label_batch2, label_batch3])        #优化模型        sess.run(optimizer, feed_dict={x: b_image, y0: b_label0, y1: b_label1, y2: b_label2, y3: b_label3})        # 每迭代20词计算一次loss和准确率        if i % 20 == 0:            #每迭代2000次降低一次学习率            if i%2000 == 0:                sess.run(tf.assign(lr, lr/3))            acc0,acc1,acc2,acc3,loss_ = sess.run([accuracy0,accuracy1,accuracy2,accuracy3,total_loss],feed_dict={x:b_image,                                                                                                                 y0:b_label0,                                                                                                                 y1:b_label1,                                                                                                                 y2:b_label2,                                                                                                                 y3:b_label3})            learning_rate = sess.run(lr)            print("Iter:%d Loss:%.3f  Accuracy:%.2f,%.2f,%.2f,%.2f  Learning_rate:%.4f" % (i,loss_,acc0,acc1,acc2,acc3,learning_rate))            #保存模型            #if acc0 > 0.9 and acc1>0.9and            if i == 6000:                saver.save(sess, "./captcha/models/crack_captcha.model", gloabl_step=i)                break    #通知其他线程关闭    coord.request_stop()    #其他所有线程关闭之后,这一函数才能返回    coord.join(threads)复制代码

最后会得到一个models参数。

使用得到的参数进行预测检验

import osimport tensorflow as tfimport numpy as npfrom PIL import Imagefrom nets import nets_factoryimport matplotlib.pyplot as plt#不同字符数量CHAR_SET_LEN = 10#图片高度、宽度IMAGE_HEIGHT = 60IMAGE_WIDTH = 160#批次BATCH_SIZE = 1#tfrecord文件存放路径TFRECORD_FILE = "E:/tf3/captcha/test.tfrecords"#占位符x = tf.placeholder(tf.float32, [None, 224, 224])#从tfrecord读取数据def read_and_decode(filename):    #根据文件名生成一个队列    filename_queue = tf.train.string_input_producer([filename])    reader = tf.TFRecordReader()    #返回文件名和文件    _,serialized_example = reader.read(filename_queue)    features = tf.parse_single_example(serialized_example,                                       features={                                           'image': tf.FixedLenFeature([], tf.string),                                           'label0': tf.FixedLenFeature([], tf.int64),                                           'label1': tf.FixedLenFeature([], tf.int64),                                           'label2': tf.FixedLenFeature([], tf.int64),                                           'label3': tf.FixedLenFeature([], tf.int64),                                           })    #获取图片数据    image = tf.decode_raw(features['image'], tf.uint8)    #没有经过预处理的灰度图    image_raw = tf.reshape(image, [224, 224])    #tf.train.shuffle_batch必须确定shape    image = tf.reshape(image, [224, 224])    #图片预处理    image = tf.cast(image, tf.float32) / 255.0    image = tf.subtract(image, 0.5)    image = tf.multiply(image, 2.0)    #获取label    label0 = tf.cast(features['label0'], tf.int32)    label1 = tf.cast(features['label0'], tf.int32)    label2 = tf.cast(features['label0'], tf.int32)    label3 = tf.cast(features['label0'], tf.int32)    return image, image_raw, label0, label1, label2, label3#获取图片数据和标签image, image_raw, label0, label1, label2, label3 = read_and_decode(TFRECORD_FILE)#使用shuffle_batch可以随机打乱image_batch, image_raw_batch, label_batch0, label_batch1, label_batch2, label_batch3 = tf.train.shuffle_batch(    [image, image_raw, label0, label1, label2, label3], batch_size = BATCH_SIZE,    capacity = 50000, min_after_dequeue=10000, num_threads=1)#定义网络结构train_network_fn = nets_factory.get_network_fn(    'alexnet_v2',    num_classes=CHAR_SET_LEN,    weight_decay=0.0005,    is_training=False)with tf.Session() as sess:    #inputs: a tensor of size [batch_size, height, width, channels]    X = tf.reshape(x, [BATCH_SIZE, 224,224,1])    #数据输入网络得到输出值    logits0, logits1, logits2, logits3, end_points = train_network_fn(X)    #预测值    prediction0 = tf.reshape(logits0, [-1, CHAR_SET_LEN])    prediction0 = tf.argmax(prediction0, 1)    prediction1 = tf.reshape(logits1, [-1, CHAR_SET_LEN])    prediction1 = tf.argmax(prediction1, 1)    prediction2 = tf.reshape(logits2, [-1, CHAR_SET_LEN])    prediction2 = tf.argmax(prediction2, 1)    prediction3 = tf.reshape(logits3, [-1, CHAR_SET_LEN])    prediction3 = tf.argmax(prediction3, 1)    #初始化    sess.run(tf.global_variables_initializer())    #载入训练好的模型    saver = tf.train.Saver()    saver.restore(sess, './captcha/models/crack_captcha.model-20')        #创建一个协调器,管理线程    coord = tf.train.Coordinator()    #启动queuerunner, 此时文件名队列已经进入队    threads = tf.train.start_queue_runners(sess=sess, coord=coord)    for i in range(5):        #获取一个批次的数据和标签        b_image, b_image_raw, b_label0, b_label1, b_label2, b_label3 = sess.run([image_batch,                                                                                 image_raw_batch,                                                                                 label_batch0,                                                                                 label_batch1,                                                                                 label_batch2,                                                                                 label_batch3])        #显示图片        img = Image.fromarray(b_image_raw[0], 'L')        plt.imshow(img)        plt.axis('off')        plt.show()        #打印标签        print('label: ', b_label0, b_label1, b_label2, b_label3)        #预测        label0, label1, label2, label3 = sess.run([prediction0, prediction1, prediction2, prediction3], feed_dict={x: b_image})        #打印预测值        print("predict: ", label0, label1, label2, label3)       #通知其他线程关闭    coord.request_stop()    #其他所有线程关闭之后,这一函数才能返回    coord.join(threads)复制代码

转载于:https://juejin.im/post/5aa8cc01f265da23a334ebe4

你可能感兴趣的文章
mysql 2013错误解决
查看>>
Windows Server 2012 存储去重
查看>>
SQL/LINQ/Lamda 写法[转发]
查看>>
25.3. UUID()
查看>>
Hadoop - Mac OSX下配置和启动hadoop以及常见错误解决
查看>>
UIPassValue页面传值 UI_08(下)
查看>>
[译] 人人都是设计师。我们可以的
查看>>
typeof、instanceof、constructor...
查看>>
ES6 数组去重,求交并差集
查看>>
Unity开篇
查看>>
移动终端高级开发工程师
查看>>
LVM的创建和管理
查看>>
我的友情链接
查看>>
Docker镜像保存为文件及从本地文件导入镜像的方法
查看>>
告警系统主脚本、配置文件及监控项目
查看>>
快速定位线上 Node.js 内存泄漏问题
查看>>
LVS+keepalived
查看>>
2012年HTML5的14个大胆预言
查看>>
VM中CentOS7本地配置yum源方法
查看>>
Shell之Sed常用用法
查看>>